Shenzhen KKPCB Technology Co., Ltd. (KKPCB) is a professional PCB and PCBA manufacturer dedicated to providing one-stop electronic manufacturing solutions. Specializing in high-difficulty, small to medium batch PCB and PCBA production, we focus on delivering high-precision, high-reliability products with fast turnaround times to meet customers’ complex design and technical requirements.

Gallery

Contacts

05, 258 Shenshan Rd, Longdong Community, Baolong St, Longgang Dist, Shenzhen, China

sales@kkpcb.com

+86-177-4855-1367

PCB Assembly
Copper Current Density in PCB Design

Copper Current Density in PCB Design

Copper current density refers to the amount of continuous current going through a copper wire —whether on a circuit board as a trace or not. According to the principles of Joule or Ohmic heating (represented as VI or I²R), any material that conducts electricity will generate heat, leading to a gradual rise in temperature in both the conductor and its surrounding environment.

PCB Manufacturing Engineering Technology
Standard PCB Thickness and Optimization

Standard PCB Thickness and Optimization

When designing a printed circuit board (PCB), engineers often focus on ensuring the correct impedance structures and electrical performance of the board. However, the physical characteristics, such as PCB thickness, are equally important and can significantly impact the cost, manufacturability, and performance of the final product. While standard PCB thicknesses are widely used, they are more of a convention than a strict requirement, offering designers an opportunity for optimization, especially in high-volume production.

PCB Design/Layout
PCB Design

Copper Current Density in PCB Design

According to Joule or Ohmic heating principles (represented as VI or I²R), any conductive material generates heat, leading to a gradual temperature rise in both the conductor and its surroundings. Managing copper current density is critical to ensure reliable PCB performance and prevent overheating. This article explores key considerations, design guidelines, and tools like OrCAD X to optimize copper current density in PCB designs.

PCB Manufacturing

PCB Design and Processing for Millimeter-Wave Circuits (Part 2)

PCB Processing The precise dimensions required for millimeter-wave circuits demand well-controlled PCB processing techniques to produce circuits with consistently excellent performance. Variations in copper plating thickness and final surface treatment on the conductor surface can impact the performance of millimeter-wave circuits. To ensure the successful fabrication of high-performance millimeter-wave circuits, both of these processes must […]