Shenzhen KKPCB Technology Co., Ltd. (KKPCB) is a professional PCB and PCBA manufacturer dedicated to providing one-stop electronic manufacturing solutions. Specializing in high-difficulty, small to medium batch PCB and PCBA production, we focus on delivering high-precision, high-reliability products with fast turnaround times to meet customers’ complex design and technical requirements.

Gallery

Contacts

05, 258 Shenshan Rd, Longdong Community, Baolong St, Longgang Dist, Shenzhen, China

+86-177-4855-1367

PCB Manufacturing
PCB Reliability Testing For Prototypes

PCB Reliability Testing For Prototypes

PCBs for commercial products must pass a set of reliability tests in order to prove their capabilities, which goes well beyond the standard functional testing found in many products. Functional tests are the starting point, but reliability tests are where a design is proven for operation in its intended environment. To help designers plan a path forward for reliability assessments, we have compiled a set of reliability tests for PCBAs.

Engineering Technology PCB Manufacturing
Ceramics Used in Electronic Applications

Ceramics Used in Electronic Applications

Ceramics used in electronics are everywhere. For instance, ferroelectrics are used to create high-dielectric capacitors and non-volatile memory devices. Ferrites play a crucial role in storing data and information. Solid electrolytes are instrumental in the storage and conversion of energy. Piezoelectrics are essential for sonar technology, while semiconducting oxides have been pivotal in monitoring environmental conditions.

PCB Manufacturing
Rigid-Flex PCB

Rigid-Flex PCB Cost Optimization: Design and Manufacturing Considerations

As the demand for flexible and rigid-flex PCBs continues to grow, understanding the factors that influence their cost is crucial for optimizing designs and ensuring cost-effective production. Rigid-flex PCBs offer significant advantages, such as enhanced flexibility, reliability, and space-saving capabilities, but they also come with unique challenges that can drive up costs if not properly managed. This article explores key design considerations, cost factors, and strategies for optimizing rigid-flex PCB designs.

PCB Manufacturing
HDI PCB

HDI PCB Design Guidelines: Optimizing High-Density Interconnect Layouts

High-density interconnect (HDI) PCBs have become a standard in modern electronics, enabling designers to create smaller, more functional devices. However, designing HDI PCBs requires careful attention to detail due to their complexity and the advanced technologies involved. This article outlines key HDI PCB design guidelines, highlights the advantages and disadvantages of HDI layouts, and provides insights into overcoming common challenges.

PCB Manufacturing
Solder Paste and Stencil Considerations for Double-Sided PCBs

Solder Paste and Stencil Considerations for Double-Sided PCBs

Designing double-sided PCBs requires careful planning to ensure efficient assembly, high yields, and reliable solder joints. Solder paste application and stencil design play a critical role in achieving these goals. This article explores key considerations for solder paste and stencil design, focusing on double-sided PCBs, component orientation, and advanced techniques for fine-pitch devices.

PCB Manufacturing Engineering Technology
Standard PCB Thickness and Optimization

Standard PCB Thickness and Optimization

When designing a printed circuit board (PCB), engineers often focus on ensuring the correct impedance structures and electrical performance of the board. However, the physical characteristics, such as PCB thickness, are equally important and can significantly impact the cost, manufacturability, and performance of the final product. While standard PCB thicknesses are widely used, they are more of a convention than a strict requirement, offering designers an opportunity for optimization, especially in high-volume production.