A multilayer PCB is a printed circuit board that consists of more than two layers, typically at least three or more layers of conductive copper, separated by an insulating material (substrate). These layers are stacked and connected by vias, resulting in a compact and efficient PCB design.
A flexible printed circuit board (FPCB) is a type of PCB that can be bent or twisted to fit into specific spaces or conform to different shapes. Unlike rigid PCBs, FPCBs are made from flexible materials, such as polyimide, and are ideal for use in compact, complex, and high-performance electronic devices.
Rigid-Flex PCB is a hybrid of both rigid and flexible PCBs. In its simplest form, Rigid-Flex PCB consists of a rigid circuit board joined with a flexible circuit board, combining the advantages of both types.
A Rigid-Flex PCB is made by laminating a rigid and a flexible substrate together to form a single board. Double-sided or multi-layer Rigid-Flex PCBs are interconnected by Plated Through Holes (PTH).
Printed Circuit Board Assembly (PCBA) refers to the process of soldering or assembling electronic components onto a PCB (Printed Circuit Board). After the components are soldered to the board, the circuit board is known as Printed Circuit Board Assembly (PCBA) or Printed Circuit Assembly (PCA). The assembly process involves a variety of techniques and tools, both manual and automated, to ensure a properly functioning electronic circuit.
Integrated Circuits (ICs) are small, compact electronic components that combine multiple elements—such as transistors, capacitors, and resistors—onto a single microchip. These ICs are essential for processing data and controlling signals in countless devices, powering everything from smartphones to industrial machinery.
When designing and manufacturing Printed Circuit Boards (PCBs), one common yet often overlooked issue is warpage. Warping occurs when the PCB bends or twists, leading to alignment issues during assembly. This deformation can cause misalignment of components, poor solder joints, and even failure of the final product.
With the continuous development of high-frequency electronic devices, especially in wireless networks and satellite communications, information products are becoming faster and higher in frequency, and communication products are moving towards large capacity and high-speed wireless transmission for voice, video, and data standardization. As a result, the next generation of products requires high-frequency substrates. The process technology for high-frequency PCB production is continuously improving to meet the diverse needs of users. Based on over ten years of experience in PCB production, this article will detail the key technical aspects and considerations for the production of high-frequency microwave PCBs.
RT-Duroid® 6010LM laminates are high-performance materials specifically designed for applications requiring excellent electrical and mechanical properties. For band-pass filters, these laminates provide several key benefits that enhance the performance, reliability, and manufacturability of the end product.
With the continuous development of electronic components, thermal management in modern electronic products has become increasingly important. Especially in highly integrated and miniaturized electronic devices, ensuring that circuit boards and components operate within the proper temperature range is a critical task for enhancing product performance and reliability. Infrared thermal imaging technology, as a non-contact temperature measurement tool, has been widely applied in the design, validation, fault diagnosis, and thermal management processes of electronic products. This article will explore the basic principles, advantages, and applications of infrared thermal imaging in the electronics industry, specifically how it helps optimize thermal management and improve product performance.
The SP200501 document provides detailed starting point compensation factors for Rogers RO4350B™ laminates. These factors are essential for optimizing PCB fabrication processes and ensuring precise dimensional control during etching, drilling, and lamination. By accounting for the material’s inherent properties and processing behavior, manufacturers can achieve high precision in RF and microwave circuit designs.